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Let X/k be a smooth variety over a field and suppose x ∈ X(k) is a rational point. A choice of an
algebraic closure k ↪→ ksep ↪→ k̄ therefore determines a geometric point x̄ → X. There is an outer action
of Gal(ksep/k) on the étale fundamental group π1(Xk̄, x̄). (From now on, we suppress the basepoint of all
fundamental groups.) Very loosely, the goal of the seminar is to understand structural features of this action,
especially when k is a finitely generated over a prime field.

More specifically, we wish to understand features and properties of those local systems which come from
geometry. For our purposes, we think of local systems as continuous representations of the étale fundamental
group. (More will be said on this in the early lectures.) Here is an ad hoc definition.

Definition 0.1. Let X/k be a smooth variety over a field k and fix a geometric point x̄ to define the étale
fundamental group π1(X, x̄). Let E/Q` be a finite extension, where ` is prime. An E-local system on X is a
continuous homomorphism π1(X, x̄)→ GLd(E), where the right hand side has the `-adic topology, for some
d ≥ 1. A Q`-local system on X is an E-local system on X for some finite extension Q` ⊃ E ⊃ Q`.

For instance, if k = C and X = Gm, we have that π1(X) ∼= Ẑ. An abstract character χ : Ẑ → Q×
` is

continuous if and only if (any) generator of Ẑ is mapped to an element Z×
` , i.e., if the entire image is contained

in the set of `-adic numbers of absolute value 1.

Definition 0.2. Let X/k be a smooth variety over a field. Let L be a Q̄` local system, where ` is prime to the
characteristic of p. We say that L is of geometric origin (or geometric, or motivic) if threre exists an open
dense U ⊂ X, a smooth projective morphism f : Y → U , and an integer i ≥ 0 such that L|U is a subquotient
of:

Rif∗(Q̄`)

.

When k = C, then sub-quotient may be replaced by “summand” by a theorem of Deligne.
The orienting questions are the following:

� Can we “characterize” those local systems which arise from algebraic geometry? What properties do
they have?

� How many local systems come from geometry? How are they located in moduli (i.e., in character
varieties or their rigid counterparts).

� When there are “enough” motivic local systems, what general facts can we deduce about local systems?

There are many interesting (and wide open) conjectures about these questions, but there have been a
number of recent developments in the last few years.

Here are several of the results we will prove in this course. The first result is a basic structural property
of motivic local systems: the eigenvalues of the parallel transport operator associated to loops around a
boundary divisor at infinity all are roots of unity. (Note that the theorem is vacuous if X is proper.)

Theorem 0.3. (Grothendieck quasi-unipotent monodromy) Let X/k be a smooth variety and let L be a
motivic local system on X. Then L has quasi-unipotent monodromy at ∞.
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To understand the next result, we first recall a celebrated result of Mazur: any Q-rational torsion point of
an elliptic curve E/Q has order dividing 12. The geometric torsion conjecture is the following: the torsion part
of the Mordell-Weil group of a family of abelian varieties over a complex quasiprojective curve is uniformly
bounded in the genus (or even gonality) of the curve.1

We state the next result in terms of complex algebraic geometry and the topological fundamental group;
strikingly, the proof goes through arithmetic.

Theorem 0.4. ([L21, Corollary 1.1.15] with antecedent [L18, Corollary 1.6]) Let X/C be a smooth connected
quasiprojective variety. Then there exists a number N = N(X) > 0 such that if:

ρ : πtop
1 (Xan)→ GLn(Z)

is a local system that arises from geometry and is trivial mod M for some integer M > N , then ρ is trivial.

Note that N is independent of n, the rank of the representation. In particular, the above result has the
following corollary. Fix a curve X/C. Then there is an integer N such that any non-isotrivial family of
abelian varieties A→ X that is generically simple cannot have a full collection of M -torsion sections for any
M > N .2

The following theorem is a strengthening of a corollary to a theorem of Deligne. Deligne’s argument
uses Hodge theory; Litt’s argument uses as inputs some properties of p-adic dynamical systems and also
Lafforgue’s solution of the Langlands correspondence for function fields.3

Theorem 0.5. ([L21, Corollary 1.1.5]) Let X/C be a smooth connected variety and let n > 0 be an integer.
Then the collection of representations

ρ : πtop
1 (Xan)→ GLn(Q`)

of geometric origin up to isomorphism is finite.

Litt in particular proves that the collection of Q` local systems of geometric origin have no limit points in
the `-adic topology. On the other hand, there has been recent speculation that the collection of local systems
of geometric origin may be dense in the Euclidean topology.

Time permitting, we could also discuss some subset of the papers [EK20a, EK20b, P20].

Outline

1. (21.04) Introduction (Raju).

Introduce classical fundamental group. Define local systems as representations of fundamental groups,
with emphasis on the story over C. Explain how the cohomology of a family of algebraic varieties gives
rise to a local system as above. State the goal theorems of the seminar.

Define the étale fundamental group. State Grothendieck’s short exact sequence and the corresponding
outer action of Gal(k) on πgeo

1 (X). Give several examples as to how much information the arithmetic
fundamental group controls, e.g. Mochizuki’s theorems.

2. (28.04) Goal: Finish background on étale fundamental group from last time. Explain the pro-` and
Q`-pro-unipotent group rings of a profinite group.

Say a word about the equivalence between “`-adic local systems” and representations of π1. Given a
family f : Y → X and a prime ` not equal to the characteristic of k, state that Rif∗Ql is a Q` local
system on X, and hence is equivalent to a continuous, finite dimensional representation of π1(X).

1In symbols, the conjecture says the following. Given g, d > 0, there exists an integer N = N(g, d) such that for any quasi-
projective curve C/C whose compactification C̄ has genus g and any family of abelian varieties AC → C with no “fixed part”,
the group of torsion sections has size no greater than N .

2As a fun exercise, prove this in the particular case of families of elliptic curves!
3For the experts: Lafforgue comes in only to show that absolutely irreducible arithmetic local systems with finite order

determinant over a curve over a finite field are pure of weight 0.
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Give [L18, Definition 2.1]: define the pro-` group ring of a profinite group Γ, the augmentation ideal,
and the unipotent completion.4 Explain that modules over the pro-` group ring are the same as
continuous `-adic representations of Γ and that the modules over the unipotent completion are the
same as unipotent representations of the group.

Explain [L18, Example 2.3] and [L18, Proposition 2.4]. (Remark that when X/k is smooth projective,
the abelianization and `-ification of this action is (dual to) the Galois representation H1(Xk̄,Z`).)

3. (05.05) Goal: Quasi-unipotent monodromy theorem.

Present Grothendieck’s proof over a mixed characteristic local field.5 In particular, explain the ram-
ification filtration: P ⊂ I ⊂ π1, see [dJcourse, Definitions 8.1, 8.2]. I recommend reading [dJcourse,
Lectures 14, 15]. The proofs of the main theorem are in [dJcourse, 15.3, 15.4]. Another possible
reference: [dJ01, Lemma 2.12].

Explain why this doesn’t immediately imply the result over C (too many roots of unity!) [dJcourse,
p. 43-44]. Time permitting, state Abhyankar’s lemma and Néron desingularization, which together do
recover the result over C. [dJcourse, Lecture 16]. (This is too optimistic, don’t worry about this.)

4. (12.05) Goal: [L18, Theorem 2.8]. Define arithmetic representations. State Theorem 1.4.6

Define the weight filtration, as in [L18, Section 2.2]. State verbally the relevant content of [BL21,
Remark 3.10] as to what this weight filtration morally measures.

State [L18, Lemma 2.9] (standard), sketch the proof of [L18, Lemma 2.10]. State Semisimplicity theorem
[L18, 2.12] (no proof) and then combine to sketch [L18, Theorem 2.8], a.k.a. “existence of Bogomolov
elements”. Time permitting, try to give some explanation for why Bogomolov elements exist.

5. (19.05) Goal [L18, Theorem 3.6]. More coloquially, define the “convergent group rings”. (Pure group
theory)

Explain [L18, example 3.1], give [L18, Definition 3.2]. Give [L18, Example 3.3]. Prove [L18, Proposition
3.4]. State [L18, Theorem 3.6] and sketch as much of the proof as you can. Make sure to mention the
intuitive content that the denominators of the eigenvectors don’t grow too quickly.

6. (02.06) Goal: Main theorems of [L18].

Put the results of last two lectures together: prove [L18, Theorem 1.2]. (Note that [L21, 1.1.13], which
is a strengthening of this result, just takes as input a result of Serre. The proofs are the same; prove
whichever one you want.) Explain [L18, Examples 4.4-4.6], state [L18, Question 4.7].

7. (09.06) Goal: Deformation of representations. (Pure group theory, source is [K]. An alternative
source is Mazur’s article in the volume on Fermat’s last theorem [CSS97, Ch. VIII].)

Define deformation problem. State and prove [K, 1.2.1]. State and prove [K, 1.3.1]. State [K, 1.4.1]. If
you can, explain the relationship with the unipotent completion.

8. (16.06) Goal: Statement of de Jong’s conjecture. Relation to deformation ring being finite flat.

State [dJ01, Conjecture 1.1]. State [dJ01, Theorem 1.2 (i)] or its more precise cousin [dJ01, Theorem
3.5]. Go through [dJ01, Section 3] and prove as much as you can of the theorem. (I will take 10-15
minutes at the end of this lecture to explain the relation to a conjectured density of motivic local
systems.)7

9. (23.06) Goal: Pseudo-representations. (Pure group theory.)

Main source: [K, Lecture 2]. Emphasize that the deformation problem for pseudo-representations works
more generally when the residual representation is not absolutely irreducible. Also the relevant facts
about moduli on [L21, p. 8-9] (just state).

4An excellent source for the unipotent completion of a group is [BF, Section 3.3].
5The first written reference I am aware for this is [ST68, Appendix], which is extremely readable.
6Note that the same proof in the paper gives [L21, 1.1.14, 1.1.15] using a letter of Serre; if time permits, state these.
7Note that de Jong’s conjecture is now a theorem. We will not cover the proof of this in the seminar.
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10. (30.06) Goal: State [L21, Theorem 1.1.3]. Explain how this generalizes Deligne’s finiteness theorem:
if X/C is a smooth quasi-projective variety, then there are only finitely many Q-local systems on X
that come from algebraic geometry. State and prove [L21, Lemma 3.2.1].

11. (07.07) Goal: Prove [L21, 1.1.3, 1.1.5]. State [L21, Corollary 4.1.6, Remark 4.1.7], and give some
small indication for what result in p-adic dynamical systems are necessary for this (i.e., what [L21,
Lemma 4.1.1] buys you.) Sketch how we can use these results to derive [L21, 1.1.3].

12. (14.07) Goal: State and prove [L21, Theorem 1.1.11].

(Optional, we can also try to pivot to one of [EK20a, EK20b, P20] instead.)
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