Atiyah bolle and isomenodromic deformation

30.11.2022

1

First GodL of Senium: This (Landerman - Litt) local system of rack < 2/9+1 on "analytically very general" curve of gluin g is not of geometric onfin. Goel today introduce enough to prove toy version. SI Attych balle · C/C curve, E (algebrasc) vector bundle on C. · Tc = tangent sheaf.

Defn (i) Diff'(E) =
$$\begin{cases} C^{60} \cdot C - lin \cdot endom up hittie T: E \rightarrow E & St. \\ \forall (local) iecten & f of C \cdot v \mapsto T(f_v) - f_{clv} \end{cases}$$

is $C_{c} - linev endom up limer of E = first order olifieetel opweters $E \rightarrow E$.
(i) $A_{1}(E) \subset Diff'(E)$ is the sub-sheaf $st. v \mapsto T(f_v) - f_{clv}$)
is given by milt' by $\delta_{c}(f)$, c local section
is given by milt' by $\delta_{c}(f)$, c local section
of C - is the New of T 's preserving P'.
(i) Straightformuld to check)
Rig. \Im IES
 $O - Euly.(EI - At(E, P')) = Lev \delta[T_1(f) - f_{clv}] \leq T_{c} - v$
Rulk for $\Im C \subset a$ reduced olivisor, have $T_{c}(-0) \subset T_{c}$
 \square Aftige balls (def. cs pullback)
 $D - F_{udg.}(E) \rightarrow At_{(c,0)}(E, P') \rightarrow T_{c}(-0) - 0$
And $Splitting \in G \subset Concestin 4/ RS along D .$$

Ruk · abtenctively let
$$TT = frame bundle of E.$$

 $JP = Hom (OC^{OR}, E).$
 $= principal Gla - belle$
the home SFS on TT
 $0 \rightarrow TTT/C \rightarrow T_{TT} \rightarrow TC \rightarrow 0$
which is $Gla - eg$, and descend to STS on $C.$
The descended SES is precisely
 $0 \rightarrow Eed(E) \rightarrow A+(E) \rightarrow Tc \rightarrow 0$
from above.
Similarly, for filtration $P^{*} C E$, use $TTp =$
 $\int frames competible with P^{*} , principal
 $P - bundle where $PC Gla$ is poralishic
proserving P^{*} .$$

1Sommodon lotre C.D Doutes Lik T: C-2 proper Suburtion, int, ..., h Flers concerted of dim ne, Si 2 -> C dif. fection L/ a contractille, with C= T'(0), D= (nD. 000 Pf Shetch Lenna (E,D) for vector belle $\pi(c, \mathfrak{h}) \xrightarrow{\sim} \pi(c, \mathfrak{L})$ on C with a ory my on (E, D) Crothad to one ended uniquely to (E, D) (Then has delyne's cannical on C with ray by day) on (F.J) extend to E.D. extr to get E Def. (2.2.3) above is the isomonochromic defonation. For $\Delta = T_{S,n}$, we call it the unive iso def. Example fourth of touter & ~ C , with a proper ser. and for each SED get flast balle Hdg (XS/ CS) u CS

§ 3. Defonction theory Let (C, D, E, P') be as above. Consider the deformation problems: Unsider in an Artin C-alg, flet muplism Defe Ter (A,n) Artin C-alg, $(A) = \begin{cases} (C, D) \rightarrow \text{ fpe. } A \end{cases}$ $\partial ef_{(C,0)} (A) = \begin{cases} (C, D) \rightarrow \text{ fpe. } A \end{cases}$ $f: C \rightarrow G$ $\text{Reducts For } C \rightarrow G \times \text{ spec } A/m$ $\text{taking } J \text{ isompliedy to Despect$ • $\partial cf(c, p, E, p) = \begin{cases} (E, p), f as above \\ + bdle E + filbeth \end{cases}$

 $\frac{P_{PP}}{(C,D,E,P')} \xrightarrow{\sim} h'(C,A_{T(C,D)}(E,P'))$ $(C,D,E,P') \xrightarrow{\circ} h'(C,A_{T(C,D)}(E,P'))$ [ii) the idered map +'(IC(-D)) +'(IC(-D)) +'(A+(C,D) (E)) is that given by to . (::i) :# P define under To in the direction of the (TC(-s)), then 3 & kar(H'(T_(1-0)) -> H'(At (C, D) (2) / At (E, P))) Ruks () Intritively U-> ELLE) -> At (E) -> T_C -> 3 and recall H'(Eud(E)) = tangent space todef of E itterf $<math>H'(T_C) = +3 + space to def of C itterf.$ H'(At(E)) Combinen both deformations. (2) Proof of (i): use frame bundle TT from above, got class $EH'(TT, T_T)$ equinit for Gly- actin >> dass E H' (A+(E1) (and Same For At (E, P), Etz).

Reall First goel of this series The (Londesman) local syster of rack < 2 J Sti an and tally very general clime is not of genetic outfin.

the above actually shows that if V is of rank 2 Note and underlies VHS (and of 00 monodramy), then the univ. isommodramic defonction does not underlie a VHS.