
NOTES ON COMPACT MODULI OF K3 SURFACES
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Lecture 1: Moduli of K3 surfaces

0.1. Beginnings of moduli. The study of a moduli space of Riemann
surfaces of genus g was initiated by Riemann, who was the first to per-
form the heuristic calculation that the space of such surfaces depends
on 3g − 3 complex parameters, or “moduli.”

In the century following, the beautiful theory of the moduli space
Mg was uncovered by work of Klein, Poincaré, Teichmüller, and others.
Formalizing intuitions aboutMg played an integral role in many fields
of mathematics, for instance in defining topological spaces, manifolds,
and groups. Understanding Riemann surfaces was a major motivation
of Klein’s Erlangen program, which sought to understand geometry in
terms of the group of symmetries of those geometries.

The study of K3 surfaces, while relatively more recent than that
of curves, also spurred many important developments in mathematics.
Their study was initiated by the Italian school of algebraic geometry,
in the early 20th century. It was already understood in the Erlangen
program that algebraic curves split into three broad categories: The
positively curved case g = 0, the flat case g = 1, and the negatively
curved case g ≥ 2.

Enriques, Castelnuovo, and later Kodaira, extended these results to
surfaces, categorizing them by their Kodaira dimension

κ(X) := dim
⊕

m≥0H
0(X,mKX)− 1.

The κ = −∞ surfaces are ruled, the κ = 0 surfaces are Calabi-Yau,
the κ = 1 surfaces are elliptically fibered, and the remaining “general
type” surfaces have κ = 2. Within the κ = 0 surfaces are those covered
by an abelian surface (the abelian and bielliptic surfaces), and those
covered by a K3 surface (the Enriques and K3 surfaces).

Definition 0.1. A K3 surface X is a compact complex surface, which
is simply connected and has trivial canonical bundle KX = OX .
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Example 0.2. Let X ⊂ P3 be a smooth hypersurface of degree 4, then
the adjunction formula implies that KX = (KP3 +4H)

∣∣
X

= OX . By the
Lefschetz hyperplane theorem, π1(X) = π1(P3) = 0 and hence X is a
K3 surface. Other examples include complete intersections X2,3 ⊂ P4,
X2,2,2 ⊂ P5, and double covers X → P2 branched over a sextic curve.

Some of the earliest K3 surfaces to be considered were the “Flächen
vierten Grades mit sechzehn singulären Punkten” of Kummer in 1884.
These are the quotients of principally polarized abelian surfaces by
negation.

Theorem 0.3 (Enriques, 1909). For all g ≥ 2, there are surfaces
X ⊂ Pg of degree 2g − 2 embedded by a complete linear system, with
trivial canonical bundle KX = OX and h1(X,OX) = 0.

Theorem 0.4 (Severi, 1909). For each 2d = 2g − 2, the number of
moduli of such surfaces is 19.

Example 0.5. Counting parameters for quartic hypersurfaces, we have
the space of quartic polynomials on P3, which has dimension

(
7
4

)
= 35,

minus the space of linear transformations GL4(C), which has dimension
16. Thus, the parameter count is 35− 16 = 19.

Some major results came from the work of Kodaira and Kuranishi,
who developed the theory of deformations of complex structures.

Theorem 0.6 (Kodaira, 1964). All K3 surfaces are deformation equiv-
alent, and the space of complex deformations of a K3 surface is 20-
dimensional.

In particular, all K3 surfaces are diffeomorphic, and more weakly,
have the same cohomology ring. We have H i(X,Z) = 0 for i = 1, 3,
H i(X,Z) = Z for i = 0, 4. Most important is that H2(X,Z) ' Z22 and
that H2(X,Z) has a perfect, symmetric bilinear intersection form, iso-
metric to the unique even unimodular lattice II3,19 of signature (3, 19).

The second cohomology H2(X,Z) admits a weight 2 polarized Hodge
structure: An orthogonal decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

for which Hp,q = Hq,p and (H2,0)⊥ = H2,0⊕H1,1. We additionally have
x · x̄ > 0 for any nonzero x ∈ H2,0 = H0(X,Ω2) ' C.

Theorem 0.7 (Siu, 1983). All K3 surfaces are Kähler.

The term K3 surface was coined by Weil in 1958, who named them
after the three mathematicians: Kähler, Kummer, Kodaira and after
the K2 mountain (because of its beauty).
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0.2. Torelli theorems. An important development in the theory of
moduli of curves was the result of Torelli that a curve could be recon-
structed from essentially linear-algebraic data.

Theorem 0.8 (Torelli, 1913). Let {α1, β1, . . . , αg, βg} be a standard
system of curves on a Riemann surface C and let (ω1, . . . , ωg) be the
basis of the abelian differentials on C for which

∫
αi
ωj = δij. Then the

isomorphism type of C is uniquely recoverable from the symmetric g×g
period matrix (

∫
βi
ωj).

In modern terminology, we would say: C can be recovered from the
polarized Hodge structure on H1(C,Z).

The central result to the understanding of moduli of K3 surfaces is
provided by an analogous “Torelli theorem” of Piatetski-Shapiro and
Shafarevich:

Theorem 0.9 (Piatetski-Shapiro, Shafarevich 1973). Let {α1, . . . , α22}
be a standard system of generators of H2(X,Z). Let Ω be the non-
vanishing holomorphic 2-form on X for which

∫
α1

Ω = 1 (the standard
system may be chosen so that such that this integral is nonzero and
α1 · α2 = 1). Then the isomorphism type of X is uniquely recoverable
from the vector

(
∫
α3

Ω, . . . ,
∫
α22

Ω) ∈ C20.

Another way to phrase this theorem is as follows: Two K3 surfaces
X and X ′ are isomorphic if and only if there exists an isometry

φ : H2(X,Z)→ H2(X ′,Z)

for which φ(H2,0(X)) = H2,0(X ′). We call such an isometry a Hodge
isometry. In addition to this statement concerning the isomorphism
type of a single surface, we also have a local Torelli theorem: This
essentially says that the complex deformation space of X is locally
isomorphic to the period space C20.

Definition 0.10. The period domain of K3 surface is
D := P{x ∈ II3,19 ⊗ C

∣∣x · x = 0, x · x̄ > 0}.
A marking of a K3 surface is an isometry φ : H2(X,Z)→ II3,19 and the
period of a marked K3 surface (X,φ) is φ(H2,0(X)) ∈ D.
Theorem 0.11 (Local Torelli Theorem). Let (X,φ) be a marked K3
surface and let X → U ⊂ H1(X,TX) ' C20 be the universal deforma-
tion, which exists by the results of Kuranishi and Kodaira, due to the
fact that h0(X,TX) = h2(X,TX) = 0. Then all fibers of X→ U have a
marking, induced by the marking of X = X0. The resulting period map
U → D is a local isomorphism.
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Let L→ X be a primitive ample line bundle. Then c1(L)·[Ω] = 0 and
furthermore, c1(L) ∈ H2(X,Z). We can refine the notion of a marking
for a pair (X,L) by choosing v ∈ II3,19 primitive with v · v = 2d and
require a marking of (X,L) to send φ : c1(L) 7→ v. Then the period
mapping lands rather in

D2d = P{x ∈ v⊥ ⊗ C
∣∣x · x = 0, x · x̄ > 0}.

Let Γ2d := {γ ∈ O(II3,19)
∣∣ γ(v) = v}. The great upshot of restricting

to polarized K3 surfaces is that now Γ2d acts properly discontinuously
on D2d. Hence, given any family (X,L)→ S over a base S, we have a
canonical defined period map

S → D2d/Γ2d.

Theorem 0.12. The moduli space of polarized smooth K3 surfaces of
degree 2d is a Zariski open subset of D2d/Γ2d. If we allow the polarized
K3 surface to have ADE singularities, then the coarse moduli space of
degree 2d K3 surfaces is exactly D2d/Γ2d.
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