(

Recall: (C, D)-pointed hyperbolic curve of genus g.
(E, ∇) flat $v . b$. on C with reg. sing. along D.

- universal isomonodramic deformation $(\xi, \widetilde{\nabla})$ of (E, ∇) on $e \xrightarrow{\pi} \Delta=T_{\text {gin }}$
- An isomonodromic deformation to a general nearby curve $\left(E, \nabla^{\prime}\right)$ of (E, ∇) is the nestriction $\left.(\varepsilon, \tilde{\nabla})\right|_{(C, D)}$ for an analytically general ($\left.C^{\prime}, D^{\prime}\right)$.
- Question (Bis was, Hen, Hurtubise):

Let (\mathbb{E}, i) be an isomonodromic deformation to a general nearby curve of (E, ∇). Is E^{\prime} somi-stable?

- Answer (L-L):Ingeneral not true.
- $\operatorname{Cor}(1.3 .6$.$) Notation as above. If r k(E)<2 \sqrt{g+1}$, then the isomonodromic deformation to a general nearby curve of E is S.S.

Today's Coal. Prove the previous result.
$\operatorname{Thm}(1.3 .4)$
Let $(C, D),(E, \nabla),(\varepsilon, \tilde{\nabla})$ be as above, and E has irred monodromy (i.e., $P_{E}: \pi_{1}(C V D) \rightarrow G L_{r}(\mathbb{C})$ imed).
let. $\left(E^{\prime}, \nabla^{\prime}\right)$ be an ism. deformation to a general nearby curve $\left(c^{\prime}, 0\right)$.

- $N_{0}: 0=N_{0} \leq \ldots \leq N_{n}=E^{\prime}$ the $H N$ filtration E^{\prime}.
- $g r_{i}^{N} E^{\prime}:=N_{i} / N_{i-1}, \mu_{i}=$ slope of $g_{i} N E^{\prime}$

Then if E^{\prime} not sss.,

1) $\forall i \neq 0, n, \exists j<i<k \Delta t$.

$$
\begin{array}{ll}
& r_{k} g r_{j+1}^{N} E^{\prime} \cdot r_{k} g r_{k}^{N} E^{\prime} \geq g+1 \\
\text { 2) } & 0<\mu_{i}-\mu_{i+1} \leq 1, \forall 0 \leq i<N
\end{array}
$$

- If (C.D) non-hyperbolic, i.e, $(g, i n)=(0,0),(0,1),(0,2)$ or (1.0), then $\pi_{1}(C \mid D)$ abelion $\Rightarrow N k E=1$. the the also holds.
- If E^{\prime} has many ron-zero graded pieces, then raE' is big.

Proof of Cor 1.3.6. using Than 1.3.4.:
(1) If E hasirred monodromy and E^{\prime} not $s S$, then by theorem 1.3.4, $\exists 0 \leq j<i<k \leq N$ st.

$$
g+1 \leqslant r k g r r_{j+1}^{N} E^{\prime} \cdot r k \underset{R}{\operatorname{grN}} E^{\prime} .
$$

On the other hand,

$$
\begin{aligned}
& \text { hand, } \\
& r k r_{j+1}^{N} E^{\prime} \cdot r k g r_{k}^{N} E^{\prime} \\
& \leqslant \frac{1}{4}\left(r k g r_{j+1}^{N} E^{\prime}+r k g r_{k}^{N} E^{\prime}\right)^{2} \\
& \leqslant \frac{1}{4} r k E^{2}
\end{aligned}
$$

$\Rightarrow \quad r k(E) \geqslant 2 \sqrt{g+1}$, contradiction.
(2) If E not irred, use induction on the $r k$. Because ext. of S.S bundles are S.S.

It suffices to prove theorem 1.3.4.

- "If $\left(E^{\prime}, \nabla^{\prime}\right)$ cloes not satisfy 1) \& 2) in tm 1.3.4, then $\mathrm{H}-\mathrm{N}$ filtration cannot deform to a n.h.d of $\left(C^{\prime}, D^{\prime}\right)$ in $\Delta=\operatorname{Tg}_{\mathrm{in}}$.

Idea of the proof of the 1.3.4.:
For $i<j$, we denote

$$
E_{i j}=\operatorname{Hom}\left(g r_{i}^{N} E^{\prime}, g r_{j}^{N} E^{\prime}\right)
$$

Claim: If E^{\prime} not sss, $\forall i, \exists j<i<k$ st.
$E_{j+1, k}^{V} \otimes W_{C}$ is not C.C.C.

1) Claim + not cal lemma $\Rightarrow \nabla i, \exists j<i<k$ s t.

$$
\begin{aligned}
& r k g_{j+1}^{N} E^{\prime} \cdot r k g_{k}^{N} E_{k}^{-1}=r k\left(E_{j+1, k}^{v} \otimes \omega_{c}\right) \geqslant g+1 \\
& \left(\mu\left(E_{j+1, k}^{N} \otimes \omega_{c}\right)=-\mu\left(E_{j+1, k}\right)+\mu\left(\omega_{c}\right)>2 g-2\right)
\end{aligned}
$$

2) $E_{j, k}^{v} \otimes \omega_{c}$ not $G G G$

$$
\begin{aligned}
& \Rightarrow 2 g-2<\mu\left(E_{\text {jul }}^{v} \otimes \omega_{C}\right) \leq 2 g-1 \\
& \Rightarrow-1<\mu\left(g r_{k}^{N} E^{\prime}\right)-\mu\left(g r_{j+1}^{N} E^{\prime}\right) \leqslant 0 \\
& \Rightarrow-1 \leq \mu\left(g_{k}^{N} E^{\prime}\right)-\mu\left(g r_{j+1}^{N} E^{\prime}\right) \\
& \leqslant \underbrace{\mu\left(g_{i+1}^{N} E^{\prime}\right)}_{\mu_{i+1}^{\prime \prime}}-\underbrace{\mu\left(g_{i}^{N} E^{\prime}\right)}_{\mu_{i}}<0 \\
& \text { (slopes of } \mathrm{gr}_{i} \text { are }
\end{aligned}
$$

Setting for the proof of the 1.3.4.

- ($C, D),(E, \nabla), E$ has inced monodromy.
- A nontrivial filtration N.

$$
0=N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{N}=E
$$

which extends to a filtration on $(\varepsilon, \tilde{\nabla})$ to a list order n.hd. of (C,D). (take $N=$ Harder-Narasimhan filtration in the proof)

- N. induces a filtration on End (E)

$$
\text { with } N_{p} \text { End }(E)=\bigoplus_{\gamma-i \leqslant p} \operatorname{Ham}\left(N_{i}, N_{j}\right) \text {, }
$$

and $N_{0} E_{n d}(E)=E_{\text {Id }}$. (E)
\leadsto filtration on End $(E) / E_{n} d_{N}$. E)

$$
\left.\Rightarrow \oplus_{p} g r_{p}^{N} \text { End } E\right) / E_{n d}(E)=\oplus_{1 \leqslant i<j \leq n} \operatorname{Hom}\left(g r_{i}^{N} E, g r_{j}^{N} E\right)
$$

- $(E, \nabla) \cdots$ a non-Zero map (prop 2.1.8)

$$
\begin{aligned}
& T_{C}(-D) \xrightarrow{q^{\nabla}} A t_{C D}(E) \rightarrow \text { End }(E) / \text { End }_{N}(E) \\
& 0 \rightarrow \text { EnduE) } \rightarrow A t_{\text {coD }}(E, N .) \rightarrow T_{C}(D) \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \begin{aligned}
& \\
& \\
&\left(C, T_{C}(D)\right) \longleftrightarrow \operatorname{Def}_{(C D)}\left(k[\varepsilon] / \varepsilon^{2}\right) \\
& H^{\prime}\left(C, A_{(C D)}\left(E, P^{\prime}\right) \longleftrightarrow \operatorname{Def}_{(C D, E, D, P)}\right.\left(k(\varepsilon] / \varepsilon^{2}\right)
\end{aligned}
\end{aligned}
$$

lemma 1: the induced map

$$
H^{\prime}\left(C_{1} T_{C}(-D)\right) \stackrel{q \underset{\rightarrow}{\nabla}}{\rightarrow} H^{\prime}\left(C, A t_{(C, D)}(E)\right) \rightarrow H^{\prime}\left(C, \text { End }(E) / \operatorname{End}_{N}(E)\right)
$$

is identically 0 .
Pf: $\forall s \in H^{\prime}\left(C, T_{C}(D)\right.$, ie., a ist order deformation (e, D) of (C.D), $q^{D}(s)$ corresponds to (E, D, E).

By the assumption, N. extends to E. By lemma 2.3.8

$$
\begin{aligned}
& \Rightarrow q^{0}(S) \in \operatorname{ker}\left(H^{\prime}(C, A t(C, D)(E)) \rightarrow H^{\prime}\left(C, \operatorname{End}(E) / \operatorname{End}_{N}(E)\right)\right) \\
& \text { (• } q^{D}(s) \in H^{\prime}\left(C, A t_{<1 D)}\left(E, N^{*}\right)\right. \\
& \text { - } H^{\prime}\left(C, A t(C,)(E, N) \rightarrow H^{\prime}(C, A+(C D)(E)) \rightarrow H^{\prime}\left(C_{1}=-d(E) / \sigma d(E)\right)\right. \\
& \text { long exact sequence induced from } \\
& \left.0 \rightarrow A t_{(C D)}\left(E N^{\prime}\right) \rightarrow A t_{(\in D)}(E) \rightarrow \text { End }(E) / \text { End }_{1}(E) \rightarrow 0\right)
\end{aligned}
$$

\Rightarrow the composition is 0 .

- lemma. $\forall \quad 0<i<n, \quad \exists j<i<k$ s.t

$$
T_{c}(-D) \rightarrow \text { End }(E) / \text { End }_{N}(E)
$$

induces a nonzero map
$\phi_{j+1, k}: T_{c}(\rightarrow D) \longrightarrow E_{j+1, k}$,
Proof:

$$
T_{C}(-D) \rightarrow \text { End }(E) / \text { End }_{N_{0}}(E)
$$

is non-zero (E irred monochromy, Prop 2.1.8.)

* $\dot{j}=$ maximal m sit. $\nabla\left(N_{j}\right) \leq N_{i} \otimes \Omega_{c}^{\prime}(\log D)$
$\Rightarrow j<i$ (E has irrred monodromy)
* $k=$ minimal in st. $\nabla\left(N_{j+1}\right) \subseteq N_{R} \otimes \Omega_{C}^{\prime}(\log D)$
$\Rightarrow \quad i+1 \leqslant k$ (the choice of j)

$$
\begin{aligned}
\Longrightarrow N_{j+1}^{\prime} / N_{j} & \rightarrow N_{k} / N_{i} \otimes \Omega_{c}^{\prime}(\log D) \\
& \rightarrow N_{k} / N_{k-1} \otimes \Omega_{c}^{\prime}(\log D)
\end{aligned}
$$

is a nonzero \mathfrak{O}_{C}-linear map.

$$
\begin{array}{r}
\Rightarrow \phi_{j+1, k} T_{C}(-D) \rightarrow \text { Hom }\left(g r_{j+1}^{N}, g r_{k}^{N}\right)=E_{j+1, k} \\
\text { non-zero }
\end{array}
$$

- lemma 3: $N^{*}=H N, f i x i$, let $j k$ be as in lemma 2 . junk 2 non-zero,
then $\phi_{j+1, k}$ induces an identically 0 map

$$
H^{\prime}\left(C, T_{c}(-D)\right) \xrightarrow{\left(\phi_{j+1}\right)_{*}} H^{\prime}\left(C, E_{j+1, k}\right) .
$$

proof: 3 steps, diagram chasing. We $\quad\left\{\begin{array}{l}\nabla N_{y} \subseteq N_{\sum} \otimes \Omega^{\prime}(p) \\ \text { shove that the maps (1) (2) induces the } \\ \nabla N_{j+1} \subseteq N_{k} \otimes \Omega(p)\end{array}\right.$ 0 map on H^{\prime}.

$$
\begin{aligned}
& \text { (3) } \uparrow \\
& \operatorname{Hom}\left(\operatorname{gr}_{j+1}^{N} E, g r_{k}^{N} E\right)=E_{j+1, k}
\end{aligned}
$$

Detail of proof for lemma 3 .
(1) End $(\bar{E}) \rightarrow \operatorname{Hom}\left(N_{j+1}, E\right)$ natural map (Sheaf surf.)

$$
\rightarrow \operatorname{End}(E) / \operatorname{End}_{N .}(E) \rightarrow \operatorname{Han}\left(N_{j+1}, E / N_{k-1}\right)
$$

\leadsto By lemma 1, $\bar{C}(-D) \rightarrow$ End $(E) /$ End $_{N}(E) \rightarrow \operatorname{Hom}\left(N_{j+1}, E / N_{N_{-1}}\right)$ induces the 0 map on H^{\prime}
(2) the short exact sequence

$$
\begin{aligned}
& 0 \rightarrow N_{j} \rightarrow N_{j+1} \longrightarrow g_{j+1}^{N} E \rightarrow 0 \\
& 0 \rightarrow \operatorname{Hom}\left(\operatorname{gr}_{j+1}^{N} E, E / N_{k-1}\right) \rightarrow \underline{\operatorname{Hom}}\left(N_{j+1} E /_{k-1}\right) \rightarrow \operatorname{Hom}\left(N_{j}, E / N_{k 1}\right) \rightarrow 0
\end{aligned}
$$

Since $T_{c}(-D) \rightarrow \operatorname{Hom}\left(\operatorname{gr}_{j+1}^{N} E, E / N_{k-1}\right) \rightarrow \operatorname{Hom}\left(N_{j+1}, E / N_{k-1}\right)$ induce the O map on H^{\prime} (by step (1))

$$
T_{c}(-D) \rightarrow \operatorname{Hom}\left(g r_{j+1}^{N} E, E / N_{k-1}\right)
$$

induces the O map on H^{\prime} too.
(3) the same as (2).

$$
\begin{aligned}
& 0 \rightarrow g r_{k}^{N} \in \rightarrow E / N_{k-1} \rightarrow E / N_{k} \rightarrow 0
\end{aligned}
$$

$\xrightarrow{\text { loges. }} \rightarrow \underbrace{H^{0}\left(C, \tan \left(\operatorname{grj}_{j+1}^{N} E, E / N_{k}\right.\right.}_{0})) \rightarrow H^{\prime}\left(C, E_{j+1, k}\right)$

$$
\left.\mu\left(\operatorname{Hom}\left(\operatorname{gor}_{j+1}^{N} E\right), E / N_{k}\right)\right)<0 \quad \longrightarrow H^{\prime}\left(C, \operatorname{Hom}\left(\operatorname{gr}_{\dot{j} 1}^{N} E, E / N_{k-1}\right)\right.
$$

Since $T_{c}(-D) \xrightarrow{\phi_{j+1, k}} E_{j+1, k} \rightarrow$ How $\left(\operatorname{grj}_{j+1}^{N} E, E / N_{k-1}\right)$
induces the O map on H^{\prime} (by step (2)), $\phi_{j+1 k}$ also induces the 0 map on H^{\prime}

- lemma 4: i.j.k. $\oint_{j+1 k}$ as abore. Hen $V_{j, k}=E_{j+1, k}^{V} \otimes W_{C}$ is not G.G.G.
proof: $\phi_{j+1, k}: T_{c}(-\Delta) \rightarrow E_{j+1, k}$ is non-zero
Serre Duality
and φ induces the 0 map

$$
\begin{aligned}
& H^{0}\left(C_{1} \quad E_{j+1, k}^{v} \otimes \omega_{C}\right) \xrightarrow{0} H^{0}\left(C, \omega_{C}^{\otimes 2}(D)\right) \\
& \Rightarrow \quad H^{0}\left(C, E_{j+1, k}^{v} \otimes \omega_{c}\right) \otimes O_{C} \xrightarrow{O} H^{0}\left(c, w_{c}^{Q^{2}}(D)\right) \otimes O_{C} \\
& \downarrow \text { e.v. } \downarrow \\
& E_{j+1, k}^{v} \otimes \omega_{C} \xrightarrow[\text { non-zeno }]{P} \omega_{C}^{\otimes^{2}}(D)
\end{aligned}
$$

\Rightarrow e.v. factors through $\operatorname{ker}(\varphi) \notin E_{j+1 k}^{v} \otimes \omega_{C}$ (coiank $\geqslant 1$)
$\Rightarrow E_{j+1, k}^{v} \otimes W_{C}$ is not C.C.C..

Pron of Thu 133.4. Assume that E^{\prime} not s.s.

* the locus of non s.s. Fibers of (ε, ∇) is a closed analytic subset of $\Delta=T_{g . n}$
* A general fiber E^{\prime} is assumed to be not sis.
\Rightarrow each fiber of (ε, \forall) is not s.s.
$+N_{11}$. extends to an open analitural subset of Δ containing HiN

So we can assume that N, extends to lIst order neighborhood of C.
$\left(F^{\prime}, \nabla^{\prime}\right)$ satisfies the conditions for lemmas 1234.
$\xrightarrow{\operatorname{lem} 1,2,3,4} \quad \forall i, \exists j<i<k$ s.t.
$E_{j+1, k} \otimes W_{C}$ is not $C i G G$

